Belastbarer Umgang mit technischen Unsicherheiten

Statistik, RAMS & Qualitätsmanagement
Auf 950 Seiten suchen:
Sitemap
MTBF-Berechnung: Funktionsweise, Grundannahmen und Konsequenzen
Was bedeutet MTBF
Wie funktionieren MTBF-Berechnungen
MTBF-Berechnung nach Standards
Was kosten MTBF-Berechnungen

Wie funktionieren MTBF-Berechnungen grundsätzlich?

MTBF bedeutet Mean Time Between Failures, die mittlere Zeit zwischen zwei Ausfällen, meistens in Stunden angegeben.
MTBF und Ausfallrate Lambda stehen jeweils im Kehrwert zueinander:  MTBF = 1/Lambda, Lambda = 1/MTBF.
Mit Ausfallraten lässt es sich einfacher rechnen, MTBF ist dagegen anschaulicher. Im Folgenden werden beide Begriffe verwendet.

Eine MTBF-Berechnung ist der Grundstein für fast jede Sicherheits- und Zuverlässigkeitsanalyse. Manchmal dienen MTBF Ergebnisse auch als Verkaufsargument.
Bei der Berechnung der MTBF eines Systems / einer Baugruppe werden zuerst die Ausfallraten aller im System / Baugruppe enthaltenen Bauteile berechnet oder abgeschätzt. Am Schluss werden alle Bauteilausfallraten zur Gesamtausfallrate aufaddiert.
Ausfallraten sind für die Berechnung einfacher, da sie sich addieren lassen. MTBF dagegen sind leichter vorstellbar.
In MTBF-Berechnungen gehen sowohl globale Parameter wie z.B. Temperatur, als auch bauteilspezifische Parameter wie z.B. elektrischer Widerstand oder Widerstandsbauform ein.


Da es für elektronische Systeme mehrere etablierte Berechnungsstandards gibt, versteht man unter einer MTBF-Berechnung meistens die MTBF von elektronischen Systemen.
Je nach Wahl des Berechnungsstandards kommen MTBF Ergebnisse heraus, die sich auf Baugruppenebene unter Umständen sehr deutlich unterscheiden.
Unterschiede von Faktor 3 sind der Regelfall, und selbst Faktor 10 kann noch nicht als Ausnahme gelten.

Natürlich eignet sich MTBF-Berechnung auch für mechanische Systeme, allerdings gibt es hierfür keine Berechnungsstandards.
MTBF Werte für mechanische Bauteile basieren in aller Regel auf Schätzungen, oder auf Katalogeinträgen der einzigen öffentlich zugängigen Datenquelle für mechanische Ausfalldaten, NPRD-1995. Der Nachfolger NPRD-2011 hat bei vergleichbarem Katalogumfang eine geringere Abdeckung, das heisst die Vielfalt an Bauteilearten ist geringer.

Die MTBF-Berechnung selbst gründet meistens auf der aus Stücklisten herauslesbaren Information, denn die eindeutige technische Beschreibung der Bauteile (z.B. 0603 SMD Filmwiderstand) enthält nämlich bereits die meisten für die Berechnung benötigten Eingabedaten. Was dann noch fehlt, lässt sich mittels Herstellernummer und Internetrecherche ermitteln.
Für eine MTBF-Berechnung braucht man also den Schaltungskontext grundsätzlich nicht zu kennen.

Zur Bestimmung des Bauteilestresses, der für die MTBF zwar
mit entscheidend ist, kommt man um einen Schaltplan kaum herum, allerdings erhält man mit bewährten globalen Belastungsannahmen nahezu das selbe Gesamtergebnis, und ist dabei noch deutlich schneller.
Genaue Belastungsdaten sind im Grunde nur bei Sicherheitsanalysen von Bedeutung, da hier zwischen gefährlichen und sicheren Ausfällen unterschieden wird, aber selbst dort gibt es schon Standards, die eine Pauschalisierung zumindest vorschlagen, zum Beispiel ISO 13849.

Dass man mit pauschalen Belastungsannahmen ähnliche Ergebnisse erhält wie mit genau berechneten Belastungen, hat zwei Gründe:
  1. In der Regel ist für diejenigen Bauteiltypen, die massgeblich zur gesamten MTBF beitragen, die Betrachtung der Belastung entweder nicht relevant oder vom angewendeten Berechnungsstandard nicht vorgesehen (Berechnungsmodelle mit wenigen Eingabeparametern sind meistens konservativ)
  2. Eine Folge bzw. ein "Nebeneffekt" des zentralen Grenzwertsatzes, wonach sich viele kleine Fehler allmählich ausmitteln.
Theorie und Annahmen hinter MTBF-Berechnungen sind umfangreicher und tiefgründiger als man vielleicht denkt.
Die Grundlage von
MTBF-Berechnungen, ja überhaupt des Begriffes MTBF, bildet die so genannte Badewannenkurve, genauer der mittlere Teil davon.

Konstante Ausfallrate

Der mittlere Teil der Badewannenkurve weist eine konstante Ausfallrate, und damit im Kehrwert eine konstante MTBF auf. Das ist nicht lediglich eine vereinfachte Sichtweise von etwas Komplexem. Die mathematische Eigenschaft "konstante Ausfallrate" bedeutet nämlich nichts anderes als dass die Ausfälle zufällig eintreten, und nicht etwa systematisch.
Während systematische Ausfälle sich durch entsprechend reifes Design zumindest theoretisch vollständig eliminieren lassen, spiegeln zufällige Ausfälle, also konstante MTBF, eine höhere Gewalt wieder, der mit systematischen Mitteln grundsätzlich nicht beizukommen ist.

Konsequenzen der konstanten Ausfallrate
  1. Wenn es nur zufällige Ausfälle gibt, dann bringt vorbeugende Wartung rein gar nichts, denn vorbeugende Wartung beruht auf der Vorhersagbarkeit von Ausfällen.
  2. Konstante Ausfallrate bedeutet dass die Produkte nicht altern. Sie sind sozusagen immer neuwertig, denn wenn die Ausfälle rein zufällig sind, dann sind nicht nur zukünftige Ausfälle unvorhersagbar, sondern dann lassen sich auch keine Schlüsse über die Vorgeschichte eines Gerätes ziehen. Am Verhalten im Feld ist grundsätzlich nicht erkennbar, ob ein Gerät schon lange läuft, oder gerade eben erst in betrieb genommen wurde.
Natürlich erweist sich die Annahme konstanter Ausfallrate bei der MTBF-Berechnung auch praktisch als sehr geschickt. Bei der Auswertung von Feld- oder Labordaten benötigt man für eine valide Berechnung nämlich viel weniger Datenpunkte als im Vergleich zu Modellen, die eine sich ändernde MTBF annehmen. Hinzu kommt, dass bei konstanter MTBF es unerheblich ist, welche Individuen wie lange gelaufen sind; entscheidend sind nur die kumulierte Laufzeit und die Anzahl Ausfälle.

Serielles Modell

MTBF-Berechnungen gehen immer davon aus, dass jeder beliebige Einzelausfall unweigerlich einen Systemausfall zur Folge hat. Dies entspricht einem seriellen Funktionsmodell, oder, was das selbe ist, dem Umstand dass der Schaltungskontext keine Rolle spielt. In der Praxis ist es allerdings so, dass bei weitem nicht jeder Bauteilfehler einen Systemausfall nach sich zieht. In abgeschwächter Form gilt diese Aussage sogar für Systeme, die keinerlei Redundanz aufweisen, denn z.B. Drifts von Bauteilen sind insbesondere in digitalen Schaltungen meist ohne weiteres tolerabel. Dadurch bekommt eine MTBF-Berechnung -vorbehaltlich anderer Faktoren- pessimistischen Charakter.

Da eine MTBF-Berechnung also oft nicht die wahren Systemverhältnisse charakterisiert, kommen nachgelagerte Analysemethoden wie z.B. FMEA und Fehlerbaum zum Einsatz. Die MTBF-Berechnung dient in solchen Fällen dann hauptsächlich als Datenquelle für die Bauteilfehlerraten, die in die FMEA und Fehlerbäume einfliessen.


Weiter


Datenschutzhinweise